Abstract

We fabricated a novel vascular endothelial growth factor (VEGF)-loaded poly(lactic-co-glycolic acid) (PLGA)-nanoparticles (NPs)-embedded thermo-sensitive hydrogel in porcine bladder acellular matrix allograft (BAMA) system, which is designed for achieving a sustained release of VEGF protein, and embedding the protein carrier into the BAMA. We identified and optimized various formulations and process parameters to get the preferred particle size, entrapment, and polydispersibility of the VEGF-NPs, and incorporated the VEGF-NPs into the (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic®) F127 to achieve the preferred VEGF-NPs thermo-sensitive gel system. Then the thermal behavior of the system was proven by in vitro and in vivo study, and the kinetic-sustained release profile of the system embedded in porcine bladder acellular matrix was investigated. Results indicated that the bioactivity of the encapsulated VEGF released from the NPs was reserved, and the VEGF-NPs thermo-sensitive gel system can achieve sol-gel transmission successfully at appropriate temperature. Furthermore, the system can create a satisfactory tissue-compatible environment and an effective VEGF-sustained release approach. In conclusion, a novel VEGF-loaded PLGA NPs-embedded thermo-sensitive hydrogel in porcine BAMA system is successfully prepared, to provide a promising way for deficient bladder reconstruction therapy.

Highlights

  • A variety of congenital and acquired conditions cause compromised bladder capacity and compliance

  • We report a novel vascular endothelial growth factor (VEGF)-loaded nanoparticles (NPs)-embedded porcine bladder acellular matrix with thermo-response system, which is designed for achieving a sustained release of VEGF protein, and embedding the protein carrier into the bladder acellular matrix allograft (BAMA)

  • The VEGF release from NPs-F127 gel embedded in full-thickness acellular porcine bladder matrix (Figure 4c, d) was slower than that from VEGFNPs

Read more

Summary

Introduction

A variety of congenital and acquired conditions cause compromised bladder capacity and compliance. We report a novel VEGF-loaded nanoparticles (NPs)-embedded porcine bladder acellular matrix with thermo-response system, which is designed for achieving a sustained release of VEGF protein, and embedding the protein carrier into the BAMA.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.