Abstract

Self-assembled hydrogels with extremely high water content (up to 99.5%) and highly tunable mechanical properties were prepared from renewable cellulose derivatives. These hydrogels are easily processed and the simplicity of their preparation, their availability from inexpensive renewable resources, and the tunability of their mechanical properties are distinguishing for important biomedical applications. The protein release characteristics were investigated to determine the effect of both the protein molecular weight and polymer loadings of the hydrogels on the protein release rate. Extremely sustained release of bovine serum albumin is observed over the course of 160 days from supramolecular hydrogels containing only 1.5 wt% polymeric constituents. This sustained release far surpasses the current state of the art for protein release from a hydrogel, highlighting these materials as important potential candidates for sustained therapeutic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.