Abstract

Oxidative stress-induced mitochondrial dysfunction plays an important role in the pathogenesis of Alzheimer's disease (AD). Hydrogen molecule, a special antioxidant, can selectively scavenge highly cytotoxic reactive oxygen species such as ·OH, exhibiting a potential to treat AD by reducing oxidative stress. However, there is no effective route to realize the continuous and efficient accumulation of administrated hydrogen in AD brain owing to its low solubility. Here, we develop the small-sized Pd hydride (PdH) nanoparticles for high payload of hydrogen and in situ sustained hydrogen release in AD brain. By virtue of the catalytic hydrogenation effect of Pd, the released hydrogen from PdH nanoparticles exhibits high bio-reductivity in favor of effectively scavenging cytotoxic ·OH in a self-catalysis way. Bio-reductive hydrogen is able to recover mitochondrial dysfunction, inhibit Aβ generation and aggregation, block synaptic and neuronal apoptosis and promote neuronal energy metabolism by eliminating oxidative stress and activating the anti-oxidative pathway, consequently ameliorating the cognitive impairment in AD mice. The proposed hydrogen-releasing nanomedicine strategy would open a new window for the treatment of AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.