Abstract

Whole-cell voltage clamp techniques were used to characterize sustained outward currents in maturing (P4 to P48) acutely isolated rat CA1 hippocampal neurones. Sodium removal and signal subtraction were used to isolate a sodium dependent sustained potassium current ( I KNa). Calcium blockade (Co 2+), sensitivity to a low TEA dose (0.5 mM) and sensitivity to Charibdotoxin (CTX 25 nM) and Iberiotoxin (IbTX 25 nM), in conjunction with signal subtraction, were used to isolate a sustained current with the characteristics of I C ( I KCa). I KNa was found in both immature (P4–5) and older (P>21) cells; this corresponded, respectively, to 56±5% and 36±6% of the outward current in younger and older cells. In the course of maturation, the voltage dependence of activation of I KNa shifted to more hyperpolarized values by approximately 20 mV. In the younger cells (P5–18) there was no evidence for sensitivity to CTX or IbTX. In 55 out of 77 older cells we found a component sensitive to CTX, IbTX, 0.5 mM TEA and Co 2+ (1.5 mM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.