Abstract

The aberrant production of nitric oxide (NO) contributes to the pathogenesis of diseases as diverse as cancer and arthritis. Sustained NO production via the inducible enzyme, nitric-oxide synthase 2 (NOS2), requires extracellular arginine uptake. Three closely related cationic amino acid transporter genes (Cat1-3) encode the transporters that mediate most arginine uptake in mammalian cells. Because CAT2 is induced coordinately with NOS2 in numerous cell types, we investigated a possible role for CAT2-mediated arginine transport in regulating NO production. The complexity of arginine transport systems and their biochemically similar transport properties called for a genetic approach to determine the role of CAT2. CAT2-deficient mice were generated and found to be healthy and fertile in contrast to Cat1(-/-) animals. Analysis of cytokine-activated macrophages from Cat2(-/-) mice revealed a 92% reduction in NO production and a 95% reduction in l-Arg uptake. The reduction in NO production was not due to differences in NOS2 protein expression, NOS2 activity, or intracellular l-arginine content. In conclusion, our results show that sustained abundant NO synthesis by macrophages requires arginine transport via the CAT2 transporter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.