Abstract

In contrast to classical findings that the medial temporal lobe (MTL) specifically underlies long-term memory, previous data suggest that MTL structures may also contribute to working memory (WM). However, the neural mechanisms by which the MTL supports WM have remained unknown. Here, we exploit intracranial EEG to identify WM-specific sustained activity patterns with the highest temporal and spatial resolution currently available in humans. Using a serial Sternberg paradigm, we found a positive shift of the direct current (DC) potential and a long-lasting decrease in MTL gamma-band activity during maintenance of a single item, reflective of a sustained reduction in neural activity. Maintenance of an increasing number of items elicited an incrementally negative shift of the DC potential and an increase in MTL gamma-band activity. In addition, the paradigm was conducted in healthy control subjects using functional magnetic resonance imaging. This confirmed that our results were not caused by pathological processes within the MTL, and that this region was indeed specifically activated during the task. Our results thus provide direct evidence for sustained neural activity patterns during working memory maintenance in the MTL, and show that these patterns depend on WM load.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.