Abstract

Studies have shown that long-term (5alpha,6alpha)-7,8-didehydro-4,5-epoxy-17-methylmorphinan-3,6-diol (morphine) treatment increases the sensitivity to painful heat stimuli (thermal hyperalgesia). The cellular adaptations contributing to sustained morphine-mediated pain sensitization are not fully understood. It was shown previously (J Neurosci 22:6747-6755, 2002) that sustained morphine exposure augments pain neurotransmitter [such as calcitonin gene-related peptide (CGRP)] release in the dorsal horn of the spinal cord in response to the heat-sensing transient receptor potential vanilloid 1 receptor agonist 8-methyl-N-vanillyl-6-nonenamide (capsaicin). In the present study, we demonstrate that sustained morphine-mediated augmentation of CGRP release from isolated primary sensory dorsal root ganglion neurons is dependent on protein kinase A and Raf-1 kinase. Our data indicate that, in addition to neural system adaptations, sustained opioid agonist treatment also produces intracellular compensatory adaptations in primary sensory neurons, leading to augmentation of evoked pain neurotransmitter release from these cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.