Abstract

With practice, performance on a task typically becomes faster, more accurate, and less prone to interference from competing tasks. Some theories of this performance change suggest it reflects a qualitative reorganization of the cognitive processing required for successful task performance. Other theories suggest this change in performance reflects a more quantitative change in the amount of processing required to perform the task. Neuroimaging research results provide some support for both of these broad theories. This inconsistency may reflect the complex nature of the effect of practice on cognitive and neural processing. Our current experiment addresses this issue by investigating the effect of practice of a relatively easy perceptual–motor task on the frontal–parietal brain network for a specific cognitive process (viz. spatial response selection). Participants were scanned during three functional magnetic resonance imaging sessions on separate days within 4 days while they performed a relatively easy spatial perceptual–motor task. We found sustained activity with practice in right dorsal prefrontal cortex; and sustained but decreasing activity in bilateral dorsal premotor, left superior parietal, and precuneus cortices, supporting a quantitative decrease in difficulty of response selection with practice. Conversely, we found a qualitative change in activity with practice in left dorsal prefrontal cortex. This brain region is outside the response selection network for this task and showed activity only during novel task performance. These results suggest that practice produces both qualitative and quantitative changes in processing. The particular effect of practice depends on the cognitive process in question.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call