Abstract

As a damage-associated molecular pattern, the myeloid-related protein 8/14 (MRP8/14) heterodimer mediates various inflammatory diseases, such as sepsis. However, how MRP8/14 promotes lung injury by regulating the inflammatory response during endotoxemia remains largely unknown. This study aims at illuminating the pathological functions of MRP8/14 in endotoxemia. An endotoxemic model was prepared with wild-type and myeloid cell-specific Mrp8 deletion (Mrp8ΔMC) mice for evaluating plasma cytokine levels. Lung injury was evaluated by hematoxylin and eosin (H&E) staining, injury scoring and wet-to-dry weight (W/D) ratio. The dynamic profile of interferon γ (IFNγ)-inducible protein 10 (IP-10) mRNA expression induced by macrophage MRP8/14 was determined by quantitative real-time polymerase chain reaction (qPCR). Immunoblotting was used to evaluate the increase in IP-10 level induced by activation of the JAK-STAT signaling pathway. Luciferase reporter assay was performed to detect the involvement of IRF7 in Ip-10 gene transcription. In vivo air pouch experiments were performed to determine the biological function of IP-10 induced by MRP8/14. Experiments with Mrp8ΔMC mice showed that MRP8/14 promoted the production of cytokines, including IP-10, in the bronchoalveolar lavage fluid (BALF) and lung injury in endotoxic mice. The result of qPCR showed sustained expression of Ip-10 mRNA in macrophages after treatment with MRP8/14 for 12h. Neutralization experiments showed that the MRP8/14-induced Ip-10 expression in RAW264.7 cells was mediated by extracellular IFNβ. Western blotting with phosphorylation-specific antibodies showed that the JAK1/TYK2-STAT1 signaling pathway was activated in MRP8/14-treated RAW264.7 cells, leading to the upregulation of Ip-10 gene expression. IRF7 was further identified as a downstream regulator of the JAK-STAT pathway that mediated Ip-10 gene expression in macrophages treated with MRP8/14. In vivo air pouch experiments confirmed that the IFNβ-JAK1/TYK2-STAT1-IRF7 pathway was required for chemokine (C-X-C motif) receptor 3 (CXCR3)+ T lymphocyte migration, which promoted lung injury in the context of endotoxemia. In summary, our study demonstrates that MRP8/14 induces sustained production of IP-10 via the IFNβ-JAK1/TYK2-STAT1-IRF7 pathway to attract CXCR3+ T lymphocytes into lung tissues and ultimately results in lung injury by an excessive inflammatory response in the context of endotoxemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call