Abstract
Galectin-8, a member of the galectin family of mammalian lectins, is a secreted protein that promotes cell adhesion and migration upon binding to a subset of integrins through sugar-protein interactions. Ligation of integrins by galectin-8 triggers a distinct pattern of cytoskeletal organization, including formation of F-actin-containing microspikes. This is associated with activation of integrin-mediated signaling cascades (ERK and phosphatidylinositol 3 kinase (PI3K)) that are much more robust and are of longer duration than those induced upon cell adhesion to fibronectin. Indeed, formation of microspikes is enhanced 40% in cells that overexpress protein kinase B, the downstream effector of PI3K. Inhibition of PI3K activity induced by wortmannin partially inhibits cell adhesion and spreading while largely inhibiting microspike formation in cells adherent to galectin-8. Furthermore, the inhibitory effects of wortmannin are markedly accentuated in cells overexpressing PKB or p70S6K (CHO(PKB) and CHO(p70S6K) cells), whose adhesion and spreading on galectin-8 (but not on fibronectin) is inhibited approximately 25-35% in the presence of wortmannin. The above results suggest that galectin-8 is an extracellular matrix protein that triggers a unique repertoire of integrin-mediated signals, which leads to a distinctive cytoskeletal organization and microspike formation. They further suggest that downstream effectors of PI3K, including PKB and p70 S6 kinase, in part mediate cell adhesion, spreading, and microspike formation induced by galectin-8.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.