Abstract

Ultrasmall blue InGaN micro-light-emitting diodes (µLEDs) with areas from 10−4 to 0.01 mm2 were fabricated to study their optical and electrical properties. The peak external quantum efficiencies (EQEs) of the smallest and largest µLEDs were 40.2 and 48.6%, respectively. The difference in EQE was from nonradiative recombination originating from etching damage. This decrease is less severe than that in red AlInGaP LEDs. The efficiency droop at 900 A/cm2 of the smallest µLED was 45.7%, compared with 56.0% for the largest, and was lower because of improved current spreading. These results show that ultrasmall µLEDs may be fabricated without a significant loss in optical or electrical performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.