Abstract

Delivery of growth factors (GFs) is challenging for regulation of cell proliferation and differentiation due to their rapid inactivation under physiological conditions. Here, a bioactive polyelectrolyte multilayer (PEM) is engineered by the combination of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and glycosaminoglycans to be used as reservoir for GF storage. PNIPAM-grafted-chitosan (PChi) with two degrees of substitution (DS) are synthesized, namely LMW* (DS 0.14) and HMW (DS 0.03), by grafting low (2 kDa) and high (10 kDa) molecular weight of PNIPAM on the backbone of chitosan (Chi) to be employed as polycations to form PEM with the polyanion heparin (Hep) at pH 4. Subsequently, PEMs are chemically crosslinked to improve their stability at physiological pH 7.4. Resulting surface and mechanical properties indicate that PEM containing HMW is responsive to temperature at 20 °C and 37 °C, while LMW is not. More importantly, Hep as terminal layer combined with HMW allows not only a better retention of the adhesive protein vitronectin but also a sustained release of FGF-2 at 37 °C. With the synergistic effect of vitronectin and matrix-bound FGF-2, significant promotion on adhesion, proliferation, and migration of 3T3 mouse embryonic fibroblasts is achieved on HMW-containing PEM compared to Chi-containing PEM and exogenously added FGF-2. Thus, PEM containing PNIPAM in combination with bioactive glycosaminoglycans like Hep represents a versatile approach to fabricate a GF delivery system for efficient cell culture, which can be potentially served as cell culture substrate for production of (stem) cells and bioactive wound dressing for tissue regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.