Abstract

The current study explored the impact of high fat diet (HFD) on hepatic oxidative and endoplasmic reticulum (ER) stress and its insulin degrading enzyme (IDE) content with the injection of 4-phenyl butyric acid (4-PBA) in adult male rats.Following the weaning period, male offspring were distributed among six distinct groups. The corresponding diet was used for 20 weeks, subsequently 4-PBA was administered for three consecutive days. Plasma glucose and insulin levels, HOMA-β (homeostasis model assessment of β-cell), hepatic ER and oxidative stress biomarkers and IDE protein content were assessed.Long-term ingestion of HFD (31 % cow butter) induced oxidative and ER stress in the liver tissue. Accordingly, a rise in the malondialdehyde (MDA) content and catalase enzyme activity and a decrease in the glutathione (GSH) content were detected within the liver of the HFD and HFD + DMSO groups. Consumption of this diet elevated the liver expression of binding immunoglobulin protein (BIP) and C/enhancer-binding protein homologous protein (CHOP) levels while reduced its IDE content. The HOMA-β decreased significantly. The injection of the 4-PBA moderated all the induced changes.Findings from this study indicated that prolonged HFD consumption led to a reduction in plasma insulin levels, likely attributed to pancreatic β cell malfunction, as evidenced by a decline in the HOMA-β index. Also, the HFD appears to have triggered oxidative and ER stress in the liver, along with a decrease in its IDE content.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.