Abstract
The molecular mechanisms of impaired liver regeneration in several liver diseases remain poorly understood. Endoplasmic reticulum (ER) stress has been observed in a variety of liver diseases. The aims of this study were to explore the impacts of ER stress on hepatocyte growth factor (HGF)-induced proliferation and c-Met expression in human hepatocyte L02 cells. Human hepatocyte L02 cells were incubated with thapsigargin (TG) to induce ER stress. 4-Phenylbutyric acid (PBA) was used to rescue ER stress. Activation of glucose-regulated protein 78, phosphorylation of PKR-like ER kinase and eukaryotic translation initiation factor-2α, and the expression of c-Met were determined by western blotting. The expression of c-Met mRNA was observed by reverse transcription polymerase chain reaction. L02 cell proliferation was determined by the MTS assay. L02 cell proliferation was significantly impaired in TG-treated L02 cells from 24 to 48h, while PBA partly restored the proliferation of L02 cells. In addition, TG treatment significantly decreased the sensitivity of L02 cells to HGF-induced proliferation. PBA partly resumed the sensitivity of L02 cells to HGF-induced proliferation. The expression of c-Met protein in L02 cells was downregulated from 6h after TG treatment, and PBA partly restored c-Met expression inhibited by TG. The expression of c-Met mRNA was also significantly downregulated from 24 to 48h after TG treatment. Our results strongly suggest that sustained ER stress inhibits hepatocyte proliferation via downregulation of both c-Met mRNA and protein expression in human hepatocyte L02 cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.