Abstract

High-yielding and sustainable production of rice in salt-affected mudflat is restricted by high soil salinity. Although sewage sludge can be used for mudflat amendment especially soil salt reduction, the possibility of potential heavy metal contamination in sludge-amended mudflat especially under paddy cultivation remains unclear, which hinders the further utilization of sewage sludge. In this study, a field experiment was conducted in a newly reclaimed mudflat to assess the sustained effects of one-time sludge input with different addition rates (0, 30, 60, 120, and 180 t ha-1) on soil salinity, rice yield, and potential metal contamination under paddy cultivation. The results indicated that sewage sludge addition (SSA) significantly decreased soil salinity and increased soil fertility. The increasing SSA rates and amending years led to the gradual increase of rice yield in salt-affected mudflat. The maximum increases in rice yield were 125.1%, 124.7%, and 127.9% in 2016, 2017, and 2018, and the average annual increase in rice yield in sludge-treated mudflat was 1.7%. Sludge addition increased metals accumulation in mudflat soil and metals uptake by rice tissues except Cr, Cu, and Pb in rice grain. The maximum increments in metal concentrations in soil and rice plant all occurred at 180 t ha-1 sludge addition rate. However, the metal concentrations in rice grain were below the safety limits even in the treatment with the highest sludge addition rate. Metal concentrations in sludge-treated soil and rice plant showed downward trend during the 3-year trial, and the decreases in total amount of soil metals were mainly concentrated in the first amending year, accounting for more than 50%. In summary, one-time sludge input achieved sustained mudflat amendment and efficient rice production. In addition, controlling the total amount of sludge input realized safe utilization of sewage sludge in salt-affected mudflat under paddy cultivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.