Abstract

Olea europaea, a native plant of the Mediterranean region, is of great interest to agronomists worldwide, owing to its health beneficial properties and tolerance to harsh environmental conditions, along with its economic importance. The productivity and production efficiency of olive is linearly related to both the level of transpiration and the amount of water supplied. Under conditions of limited supply of good quality water for irrigation in Kuwait, deficit irrigation applied at selected phenological stages can maximize economic gains and minimize environmental damage. Moreover, mulching contributes to a significant reduction in water requirements via reducing soil water losses and increasing soil water retention. In this study, the effects of different irrigation levels, a restitution of 50%, 75% or 100% of the estimated evapotranspiration rate (ETc), and the application of mulching on plant growth under the Kuwait environmental conditions were determined to evaluate the possibilities of reducing the amounts of water supplied with irrigation. Various parameters determining the vegetative growth of the trees such as average height, stem girth and number of branches were recorded at three months intervals. Both the irrigation level and mulching were shown to possess a significant impact on growth of Sourani olive cultivar under the Kuwait environmental conditions. Statistical analysis revealed no significant difference in the height of the trees under all the three irrigation treatments with mulch and trees under 100% ETc devoid of mulch. In contrast, a significant difference was exhibited by trees under 100% ETc with mulch and 50% ETc without mulch. Within each irrigation treatment, trees with mulch presented higher values for plant height, stem girth and number of shoots. Thus deficit irrigation of 50% ETc along with organic mulch was shown to enhance vegetative growth close to its maximum potential by conserving the scarce water resources.

Highlights

  • Olive is considered as one of the most important crops in the world, with a total cultivated area over 9.6 million ha in 2011 and an average yield of 2.1 t/ha (FAO, 2013) [1]

  • In order to evaluate the possibilities of reducing the amounts of water supplied with irrigation, it was carried out the present investigation to determine the effects of different irrigation levels, namely, a restitution of 50%, 75% or 100% of estimated ETc, and the application of mulching on plant growth under the Kuwait environmental conditions

  • Plant height: The pooled analysis of variance on the six factorial combinations obtained with three irrigation levels (100% ETc, 75% ETc, and 50% ETc) and two organic mulch treatments after 18 months post planting indicated no significant difference in the height of the trees under all the three irrigation treatments with mulch and trees under 100% ETc devoid of mulch

Read more

Summary

Introduction

Olive is considered as one of the most important crops in the world, with a total cultivated area over 9.6 million ha in 2011 and an average yield of 2.1 t/ha (FAO, 2013) [1]. Ramos and Santos (2010) [8] reported that olive oil production of sustained deficit irrigation (SDI) treatment with 60% of ETc water applied with irrigation was 32.5% and 40.1% higher in 2006 and 2007, respectively than the fully irrigated treatment, despite receiving 49% less irrigation water Such strategy could allow for an efficient use of water in the region, of very limited available resources, and for modest, but important oil yield increase. In order to evaluate the possibilities of reducing the amounts of water supplied with irrigation, it was carried out the present investigation to determine the effects of different irrigation levels, namely, a restitution of 50%, 75% or 100% of estimated ETc, and the application of mulching on plant growth under the Kuwait environmental conditions

Materials and Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.