Abstract

G protein-coupled receptors (GPCRs), including endothelin receptor A (ETA) and B (ETB), may form dimers or higher-order oligomers that profoundly influence signaling. Here we examined a PDZ finger motif within the C-terminus of ETA and its role in heterodimerization with ETB, and in homodimerization with itself, when expressed in HEK293 cells. Receptor dimerization was monitored by (i) fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) (FRET donor) and tetracysteine/FlAsH (FRET acceptor) fused to the C-termini of ET receptors, and (ii) coimmunoprecipitation of ET receptors after mild detergent solubilization. Mutations in a PDZ finger motif at threonine403/serine404 eliminated FRET and reduced coimmunoprecipitation of heterodimers and homodimers. Functional consequences were evaluated by measuring mobilization of intracellular Ca2+ and internalization of receptors in response to a 10 nmol/L ET-1 challenge. PDZ mutations converted a sustained Ca2+ signal mediated by ETA:ETB heterodimers into a transient response, similar to that observed for homodimers or monomers. Heterodimers containing PDZ mutations were seen to internalize in a similar time domain (approximately 5 min) to the transient Ca2+ elevation and with similar kinetics to internalization of ETA homodimers or monomers. Without the PDZ mutations, heterodimers did not internalize over 15 min, suggesting the intriguing possibility that sustained Ca2+ signaling was a consequence (at least in part) of delayed internalization. The results are consistent with structural models of ETA-receptor dimerization that place threonine403/serine404 of the PDZ finger motif at the interaction interface between heterodimers and homodimers. Sustained Ca2+ signaling and delayed endocytosis of ETA:ETB heterodimers argues strongly for a unique dimer interface that impacts transmembrane signaling and internalization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call