Abstract

Localized and continuous osteogenic stimulation to defected sites is required for effective bone regeneration. Here, we suggest an injectable and sustained bone morphogenetic protein-2 (BMP-2) release system using thermosensitive polymeric nanoparticles bearing dual interacting forces with BMP-2. For sustained BMP-2 release, hydrophobic and ionic interactions were introduced to thermosensitive poly(phosphazene). Hydrophobic isoleucine ethyl ester and hydrophilic poly-ethylene glycol were mainly substituted to the poly(phosphazene) back bone for amphiphilicity and hydrophobic interaction with BMP-2. Carboxylic acid moiety was additionally substituted to the back bone for ionic interaction with BMP-2. These dual interacting polymeric nanoparticles (D-NPs) formed compact nanocomplexes with BMP-2. The aqueous solution of BMP-2/D-NP nanocomplexes was transformed to hydrogel when the temperature of the solution increased. Loaded BMP-2 was sustain-released for three weeks from the BMP-2/D-NP nanocomplex hydrogel. The extended BMP-2 exposure caused higher osteocalcin secretion in C2C12 cells. Significant bone generations were observed at the target site by single injection of BMP-2/D-NP nanocomplexes in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.