Abstract

Insulin resistance is a condition in which cells are defective in response to the actions of insulin in tissue glucose uptake. Overstimulation of β-adrenergic receptors (βARs) leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, the mechanisms by which sustained βAR stimulation affects insulin resistance in the heart are incompletely understood. In this study, we demonstrate that sustained βAR stimulation resulted in the inhibition of insulin-induced glucose uptake, and a reduction of insulin induced glucose transporter (GLUT)4 expression that were mediated by the β2AR subtype in cardiomyocytes and heart tissue. Overstimulation of β2AR inhibited the insulin-induced translocation of GLUT4 to the plasma membrane of cardiomyocytes. Additionally, βAR mediated cardiac insulin resistance by reducing glucose uptake and GLUT4 expression via the cAMP-dependent and protein kinase A-dependent pathways. Treatment with β-blockers, including propranolol and metoprolol antagonized isoproterenol-mediated insulin resistance in the heart. The data in this present study confirm a critical role for protein kinase A in βAR-mediated insulin resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.