Abstract

Resveratrol-phospholipid complex (Phytosome®) (RSVP) was found better aqueous soluble and permeable than free resveratrol (RSV). RSVPs were incorporated in polymeric patch prepared by solvent casting method using Eudragit RL 100, PVP K30, and PEG 400 for application on dermal sites for sustained treating of inflammation. Prepared patches were evaluated for various physicochemical properties, surface morphology by SEM, TEM, and compatibility of patch components by FT-IR and DSC studies. Optimized formulation (F9) gave 95.79 ± 3.02% drug release and 51.36% (4.28 ± 0.48mg/cm2) skin permeation after 24h. Skin extract when examined for drug accumulation showed 38.31 ± 2.42% drug content. FE-SEM images of the patch taken after drug release and skin permeation studies showed that RSVPs in polymeric patch are stable and retain their structure after 24h long exposure to physiologic environment. Sustained anti-inflammatory effect was established in carrageenan-induced paw edema model in which test formulation gave 84.10% inhibition of inflammation at 24h as compared to 39.58% for standard diclofenac sodium gel. The CLSM study confirmed the localization of RSVPs for a longer period, thus enabling drug targeting to the dermis for sustained effect. Skin irritation test on rabbit revealed that the patches are safe for skin application. Histological observations suggested that after exposure to the permeants, the SC integrity had not altered and no evidence of presence of inflammatory cells found. RSVP (Phytosome®) containing patches abled to give sustained therapeutic effect that may be useful in treating acute and chronic inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.