Abstract

In a previous study, we identified three cortical areas in human posterior parietal cortex that exhibited topographic responses during memory-guided saccades [visual area 7 (V7), intraparietal sulcus 1 (IPS1), and IPS2], which are candidate homologs of macaque parietal areas such as the lateral intraparietal area and parietal reach region. Here, we show that these areas exhibit sustained delay-period activity, a critical physiological signature of areas in macaque parietal cortex. By varying delay duration, we disambiguated delay-period activity from sensory and motor responses. Mean time courses in the parietal areas were well fit by a linear model comprising three components representing responses to (1) the visual target, (2) the delay period, and (3) the eye movement interval. We estimated the contributions of each component: the response amplitude during the delay period was substantially smaller (<30%) than that elicited by the transient visual target. All three parietal regions showed comparable delay-period response amplitudes, with a trend toward larger responses from V7 to IPS1 and IPS2. Responses to the cue and during the delay period showed clear lateralization with larger responses to trials in which the target was placed in the contralateral visual field, suggesting that both of these components contributed to the topography we measured.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call