Abstract
Sustained activation of persulfate through the slow release of Fe(II) from silica-coated nanosized zero-valent iron (nZVI) particles (nZVI@SiO2) was investigated. Slow release of Fe(II) prevented radical scavenging by excess Fe(II) and increased the radical yield, which improved the stoichiometric efficiency of phenol degradation. Sulfate and hydroxyl radicals were found to be the main oxidative species produced during phenol degradation and were found to make comparable contributions to oxidation. The nZVI@SiO2 particle silica shell thickness controlled the release of Fe(II) and therefore the sustained activation of persulfate and was strongly affected by the synthesis conditions, including the [Si]/[Fe] ratio and silica supply rate. Optimal sustained phenol degradation was achieved when nZVI@SiO2 particles were synthesized using a [Si]/[Fe] ratio of 0.5 and a tetraethyl orthosilicate supply rate of 0.5 mL/min, and this was attributed to the nZVI@SiO2 particles giving an optimal Fe(II) release rate and therefore a high persulfate activation rate and a high phenol removal efficiency. Sustained persulfate activation induced by Fe(II) being slowly released was described well by single-stage first-order kinetics rather than two-stage first-order kinetics typical of unmodified nZVI/persulfate systems. Persulfate was found still to be activated by iron (oxyhydr)oxides minerals after the nZVI@SiO2 particles had been exhausted but the persulfate sustained activation induced by the slow release of Fe(II) played a crucial role in determining the overall degradation efficiency. The results highlight the importance of the slow release of Fe(II) from nZVI-based materials for in situ chemical oxidation through sustained persulfate activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.