Abstract

Water purification by solar distillation is considered a promising technology for producing clean water from undrinkable water resources. A solar steam generator is a central part of a solar distillation process to separate water and contaminants. Here, we report an efficient and sustainable hierarchical solar steam generator (HSSG) with reduced vaporization enthalpy based on bacterial cellulose (BC) nanocomposites. The nanomaterials are assembled with BC nanofibers produced by bacteria in situ to form nanocomposites. Using this method, we construct functional BC nanocomposites inside and on the natural porous structure of wood. Our HSSG integrates solar-to-vapor efficiency improvement and vaporization enthalpy reduction by integrating the hierarchical multifunctional BC nanocomposites with the natural porous structure of wood. Because of the biomimetic design, hierarchical structure and reduced vaporization enthalpy of HSSG, a high evaporation rate of 2.9 kg m-2 h-1 and solar-to-vapor efficiency of 80% is achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call