Abstract

Abstract Reducing the quantity of water in recent years has increased the competition between development projects and the environment. Wetlands are increasingly under pressure due to human activities. The most serious threats to wetlands are excessive agriculture and the diversion of water for irrigation. In recent years, due to water shortage and drought, wetland dryness in Iran has caused many problems, including the dust crisis. Therefore, planning at the basin scale is necessary to achieve sustainable development, which emphasizes the employment of mathematical models. In this study, using a reliability-based simulation–optimization approach, development planning in the Karkheh basin with the following two objectives is investigated: (1) total area under cultivation of agricultural development sectors and (2) supply reliability of the environmental flow requirement. The Water Evaluation and Planning (WEAP) model is used for the simulation of water resources and the multi-objective particle swarm optimization (MOPSO) algorithm is employed for optimization. The results show that in addition to significantly improving the supply reliability of the wetland requirement (from 55 to 79%), the design of agricultural development projects has been optimized. The reliability-based model has prevented unsustainable developments in the basin. Also, the average supply reliability of agricultural demands has increased from 51% (in previous studies) to 72%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.