Abstract
Developments in geopolymer construction are gaining more interest nowadays due to the elimination of cement and the consequent effects such as carbon dioxide emission, greenhouse effect, etc. Although the use of fly ash as a binder in the geopolymer system acts as a key solution for the major hazardous effects like land dumping, soil contamination, groundwater pollution, and respiratory diseases, the slow reactivity of the fly ash resulted in the considerable reduction in the strength. In this paper, a novel pretreatment method was employed on the fly ash binder in terms of thermal and mechanical means. Also, a cost-effective nano fly ash powder was synthesized and used as filler material on the geopolymer system. The efficiency of the fabricated geopolymer mortar was assessed by examining the workability, compressive strength, and resistance against chloride ion penetration. The geopolymer mortars with pre-treated fly ash exhibited a highly workable mix of 130% improved flow rate without adding any superplasticizer. Further, the addition of 1% nano fly ash, exhibited the highest compressive strength of 71.22 MPa, confirmed almost nil chloride ion permeability, and sustained 90% residual strength after immersing in the brine solution for 60 days which explored the development of sustainable and cost-effective geopolymer construction in the marine environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.