Abstract
A waste-struvite/diatomite compound (MAP@Dia) recovered from nutrient-rich wastewater treated by MgO-modified diatomite (MgO@Dia) was provided to immobilize lead in aqueous solution and contaminated soil. The mechanism and effectiveness of lead immobilization was investigated, and the pHstat leaching test and fixed-bed column experiments were carried out to assess the risk of MAP@Dia reuse for lead immobilization. The results showed that MAP@Dia were effective in immobilizing lead in aqueous solution with adsorption capacity of 832.47-946.50mg/g. The main mechanism of Pb immobilization by MAP@Dia could be contributed by surface complexation and dissolution of struvite followed by precipitation of hydroxypyromorphite Pb10(PO4)6(OH)2. Lead(II) concentration reduced from 269.61 to 78.26mg/kg, and residual lead(II) increased to 53.14% in contaminated soil when the MAP@Dia application rate was 5%. The increased neutralization capacity (ANC) and lower lead extraction yields in pHstat leaching test in amended soil suggested 5 times of buffering capacity against potential acidic stresses and delayed triggering of "chemical time bombs." The results of column studies demonstrated that amendment with MAP@Dia could reduce the risk of lead and phosphorus (P) leaching. This study revealed that MAP@Dia could provide an effective solution for both P recycling and lead immobilization in contaminated soil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.