Abstract

Currently, energy scarcity and environmental pollution are two severe challenges facing humanity. On one hand, significant efforts are being devoted to the development of sustainable, cheap, high-performance rechargeable battery cathodes. On the other hand, organic dyes are one of main contaminating components in plant effluents, damaging the ecological balance of surrounding areas as well as wasting a lot of valuable chemical raw materials. In this study, we rationally designed a strategy to simultaneously address these two issues. After carefully studying the chemical structure of dye molecules, we find that two types of widely-used dyes including phenothiazine dyes and anthraquinone derivatives with intrinsic redox centers can be effectively decolorized by adsorption removal with mesoporous carbon and directly resource-utilized for lithium-ion battery electrode materials. For example, the composite based on mesoporous carbon hosting methylene blue dye achieves an outstanding specific capacity of 107 mAh g-1 even at a high current of 3 A g-1 and long-term cycling stability with 82% initial capacity retention after 1000 cycles, which is comparable to the classic LiFePO4 material, and superior to many recently-reported organic cathode materials. Our strategy therefore “kills two birds with one stone”, enabling the development of high-performance battery cathodes based on organic dyes in combination with effective valorization of dye-containing wastewaters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call