Abstract

The synthesis of sulfides has been widely studied because this functional subunit is prevalent in biomolecules and pharmaceuticals, as well as being a useful synthetic platform for further elaboration. Thus, various methods to build C-S bonds have been developed, but typically they require the use of precious metals or harsh conditions. Electron donor-acceptor (EDA) complex photoactivation strategies have emerged as versatile and sustainable ways to achieve C-S bond formation, avoiding challenges associated with previous methods. This work describes an open-to-air, photoinduced, site-selective C-H thioetherification from readily available reagents via EDA complex formation that tolerates a wide range of different functional groups. Moreover, C(sp2 )-halogen bonds remain intact using this protocol, allowing late-stage installation of the sulfide motif in various bioactive scaffolds, while allowing yet further modification through more traditional C-X bond cleavage protocols. Additionally, various mechanistic investigations support the envisioned EDA complex scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.