Abstract

Information theory provides a useful tool to understand the evolution of complex nonlinear systems and their sustainability. In particular, Fisher information has been evoked as a useful measure of sustainability and the variability of dynamical systems including self-organising systems. By utilising Fisher information, we investigate the sustainability of the logistic model for different perturbations in the positive and/or negative feedback. Specifically, we consider different oscillatory modulations in the parameters for positive and negative feedback and investigate their effect on the evolution of the system and Probability Density Functions (PDFs). Depending on the relative time scale of the perturbation to the response time of the system (the linear growth rate), we demonstrate the maintenance of the initial condition for a long time, manifested by a broad bimodal PDF. We present the analysis of Fisher information in different cases and elucidate its implications for the sustainability of population dynamics. We also show that a purely oscillatory growth rate can lead to a finite amplitude solution while self-organisation of these systems can break down with an exponentially growing solution due to the periodic fluctuations in negative feedback.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.