Abstract

Organic micropollutants (OMPs) in water resources are a growing threat to aquatic ecosystems and human health. Efficient removal of polar OMPs is very challenging because of their high hydrophility. Synthesizing novel adsorbent capable of high-efficiently removing hydrophilic and hydrophobic micropollutants is highly desirable for water remediation. Here, using natural proanthocyanidin as building units, a novel hydroxyl-functional porous organic framework (denoted as PC-POF) with amphiphilic feature was synthesized through facile azo coupling reaction. Five sulfonamide antibiotics were selected as model OMPs for adsorption study. Adsorption experiments demonstrated a more rapid and efficient sulfonamides capture ability of the PC-POF than that of the most reported adsorbents due to strong hydrogen bonding, π stacking and electrostatic interactions. The PC-POF can be easily recovered and reused at least 5 times without obvious decline in adsorption performance. Moreover, experiments conducted at environmentally relevant concentrations (μg L−1) further confirmed a notable adsorption performance of the PC-POF even when the sulfonamides solution was rapidly passed through the PC-POF packed column. The PC-POF also showed good adsorption performance for other micropollutants like neonicotinoid insecticides, nitroimidazole antibiotics and triazine herbicides, indicating a promising prospect. This work provides a new strategy to construct amphiphilic adsorbent by using renewable resources for pollutants removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call