Abstract

AbstractIn this study, bio‐based hyperbranched ester was synthesized from castor oil. The chemical structure of the bio‐based hyperbranched ester obtained was characterized with Fourier transform infrared and 1H NMR spectra. Soft polyvinyl chloride (PVC) materials were prepared via thermoplastic blending at 160 °C using bio‐based hyperbranched ester as plasticizer. The performances including the thermal stability, glass transition temperature (Tg), crystallinity, tensile properties, solvent extraction resistance and volatility resistance of soft PVC materials incorporating bio‐based hyperbranched ester were investigated and compared with the traditional plasticizer dioctyl phthalate (DOP). The results showed that bio‐based hyperbranched ester enhanced the thermal stability of the PVC materials. The Tg of PVC incorporating bio‐based hyperbranched ester was 23 °C, lower than that of PVC/DOP materials at 28 °C. Bio‐based hyperbranched ester showed a better plasticizing effect, solvent extraction resistance and volatility resistance than DOP. The plasticizing mechanism is also discussed. © 2018 Society of Chemical Industry

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call