Abstract

Hydroxypropyl cellulose (HPC) is a green thermochromic material in energy-saving buildings, anti-counterfeiting, and data security fields. However, the high lower critical solution temperature (LCST) of HPC, around 42 °C (higher than the human thermal comfort temperature), limits its thermochromic sensitivity, poor stability, and short lifespan. Herein, we developed a durable, high-performance cellulose-based thermochromic composite with a lower LCST and easy preparation capability by combining HPC with sodium carboxymethyl cellulose (CMC). In such thermochromic cellulose, CMC constructs a hydrophilic skeleton to enable uniform dispersion of HPC, and functions as a stronger competitor to attract the water molecules compared to HPC, both of which trigger high thermochromic sensitivity and low LCST (just 32.5 °C) of our CMC/HPC. In addition, CMC/HPC shows superior stability, such as 100-day working capability and 60-time recyclability. This advancement marks a significant step forward in creating sustainable, efficient thermochromic materials, offering new opportunities for energy conservation in the building.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.