Abstract

AbstractThermal insulation materials (TIMs) have been widely used over the past century. In this landscape, expandable polystyrene (EPS) is the dominant choice; however, the waste management of EPS is hampered by recycling challenges and lack of economic incentives. Concurrently, the order delivery and pharmaceutical distribution have experienced significant growth due to lifestyle shifts after the pandemic. For instance, the utilization of drones for transportation is illustrated (see abstract figure) as a prospective alternative transportation protocol. In this work, a synthetic method is developed to prepare bio‐degradable thermal insulator material from recycled wood and silica aerogel. The silica aerogel wood composite (SAWc) has the following properties: 1) low carbon emission (4.932 kg CO2e kg−1); 2) low thermal conductivity (0.032 W mK−1) with an anisotropy of 1.5; 3) high compressive strength (yield stress = 8.60 Mpa); 4) excellent resistance to organic solvents; 5) high biodegradability (49.4% weight loss after 28 days); 6) excellent flame retardancy, both of which are above EPS. The scalable, super‐insulating, and robust thermal insulator, as demonstrated in this work, holds high potential as an alternative packaging material poised to shape the next era in thermal insulation solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.