Abstract

Agriculture will face the issue of ensuring food security for a growing global population without compromising environmental security as demand for the world's food systems increases in the next decades. To provide enough food and reduce the harmful effects of chemical fertilization and improper disposal or reusing of agricultural wastes on the environment, will be required to apply current technologies in agroecosystems. Combining biotechnology and nanotechnology has the potential to transform agricultural practices and offer answers to both immediate and long-term issues. This review study seeks to identify, categorize, and characterize the so-called smart fertilizers as the future frontier of sustainable agriculture. The conventional fertilizer and smart fertilizers in general are covered in the first section of this review. Another key barrier preventing the widespread use of smart fertilizers in agriculture is the high cost of materials. Nevertheless, smart fertilizers are widely represented on the world market and are actively used in farms that have already switched to sustainable technologies. The advantages and disadvantages of various raw materials used to create smart fertilizers, with a focus on inorganic and organic materials, synthetic and natural polymers, along with their physical and chemical preparation processes, are contrasted in the following sections. The rate and the mechanism of release are covered. The purpose of this study is to provide a deep understanding of the advancements in smart fertilizers during the last ten years. Trends are also recognized and studied to provide insight for upcoming agricultural research projects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call