Abstract
Sentiment analysis (SA) of several user evaluations on e-commerce platforms can be used to increase customer happiness. This method automatically extracts and identifies subjective data from product evaluations using natural language processing (NLP) and machine learning (ML) methods. These statistics may eventually reveal information on the favourable, neutral, or negative attitudes of the consumer base. Due to its capacity to grasp the complex links between words and phrases in reviews as well as the emotions they imply, deep learning (DL) is very useful for SA tasks. A unique approach termed Weighted Parallel Hybrid Deep Learning-based Sentiment Analysis on E-Commerce Product Reviews (WPHDL-SAEPR) is introduced by the proposed system. Accurately distinguishing between distinct sentiments found in online store reviews is the aim of the WPHDL-SAEPR technique. Additional data pre-processing processes are implemented within the WPHDL-SAEPR architecture to guarantee compatibility. Words are embedded into the paper using the word2vec model, while sentiment is classified using the WPHDL model. The Restricted Boltzmann Machine (RBM) and Singular Value Decomposition (SVD) models are combined in this model. The results of the WPHDL-SAEPR approach’s simulation were assessed using a consumer review database, with the results being emphasized at each stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.