Abstract

Strain-hardening cementitious composites (SHCC) exhibiting tensile strain-hardening and multiple-cracking behaviors are attractive for many construction applications. Compared to conventional concrete, typical SHCC are cost-, energy- and carbon-intensive. Specifically, the cement content of typical SHCC mixtures can be as high as 600–1200 kg/m3. To reduce the material cost and improve the sustainability of SHCC, one possible approach is to replace cement with supplementary cementitious materials (SCM). It has been shown in the literature that the limestone calcined clay (LC2) system is a promising source of SCM for conventional concrete. This paper presents an attempt to use ultrahigh-volume LC2 (80% by weight of binder) to produce polyvinyl alcohol (PVA) fiber-reinforced SHCC with adequate compressive strength and excellent tensile performance. This version of sustainable SHCC is applicable for many practical applications, and the substitution of high percentages of cement with LC2 can reduce the environmental impact significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call