Abstract

An improved protocol for the transformation of ribonucleosides into 2′,3′-dideoxynucleoside and 2′,3′-didehydro-2′,3′-dideoxynucleoside derivatives, including the anti-HIV drugs stavudine (d4T), zalcitabine (ddC) and didanosine (ddI), was established. The process involves radical deoxygenation of xanthate using environmentally friendly and low-cost reagents. Bromoethane or 3-bromopropanenitrile was the alkylating agent of choice to prepare the ribonucleoside 2′,3′-bisxanthates. In the subsequent radical deoxygenation reaction, tris(trimethylsilyl)silane and 1,1′-azobis(cyclohexanecarbonitrile) were used to replace hazardous Bu3SnH and AIBN, respectively. In addition, TBAF was substituted for camphorsulfonic acid in the deprotection step of the 5′-O-silyl ether group, and an enzyme (adenosine deaminase) was used to transform 2′,3′-dideoxyadenosine into 2′,3′-dideoxyinosine (ddI) in excellent yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.