Abstract

Under the global water crisis, utilizing low-quality water sources in agriculture for irrigation has offered an effective solution to address the shortage of water. Using an excess of low-quality water sources may cause serious risks to the environment, which threaten crop safety and human health. Three kinds of irrigation water (0.413, 1.44, and 2.84 dS m−1) were selected under foliar-applied bio-nanofertilizers of selenium (100 mg L−1) and copper (100 mg L−1) in individual and/or combined application. The nanofertilizers were tested on the production of tomato under greenhouse. After harvesting, the quality of tomato yield and soil biology was evaluated. Using saline water for irrigation caused many main features in this study such as increasing the accumulation of salts, soil organic matter, and CaCO3 in soil by 84.6, 32.3, and 18.4%, respectively, compared to control. The highest tomato yield (2.07 kg plant−1) and soluble solids content (9.24%) were recorded after irrigation with low water quality (2.84 dS m−1) and nano-Cu fertilization. The plant enzymatic antioxidants and soil biological activity were decreased in general due to the salinity stress of irrigation water. After 30 days from transplanting, all studied soil biological parameters (soil microbial counts and enzymes) were higher than the same parameters at harvesting (80 days) under different categories of water quality. The values of all soil biological parameters were decreased by increasing water salinity. This study was carried out to answer the question of whether the combined nanofertilizers of selenium and copper can promote tomato production under saline water irrigation. Further investigations are still needed concerning different applied doses of these nanofertilizers.

Highlights

  • Introduction distributed under the terms andConventional fertilizers have caused many environmental problems such as inducing food contamination and soil degradation due to intensive use of these mineral fertilizers and pesticides [1]

  • This trend includes the dominant impact of nano-Cu under good water quality (IW1), whereas under moderate (IW2) and low water quality (IW3), nano-Se and combined nano-Cu and -Se, respectively, were more effective

  • High significant correlation could be found among the soil biological parameters in the Supplementary Material (Table S1). These results suggest that there is an association between nanofertilizers and soil biological activities, which mainly depends on the quality of irrigation water

Read more

Summary

Introduction

Conventional fertilizers have caused many environmental problems such as inducing food contamination and soil degradation due to intensive use of these mineral fertilizers and pesticides [1]. Because of the poor conventional fertilizer use efficiency (ranging from 20 to 40%), a big amount of these fertilizers leached to groundwater and rivers, causing conditions of the Creative Commons. Many studies reported benefits that resulted from nanofertilizers applied to cultivated crops such as alfalfa [5], soybean [6], potato [7], cabbage [8], maize [9], and wheat [10]. These benefits of nanofertilizers may include improving fruit quality, productivity, and shelf life and reducing the leaching of nutrients into soil after the harvesting of crops [8,10]. The most common nutrients that are already applied as nutrient-based nanofertilizers include iron [8], copper [5,11,12], selenium [13,14], and zinc [10,15,16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call