Abstract

As the fastest mode of transport, the aircraft is a major driver for globalization and economic growth. The development of alternative advanced liquid fuels is critical to sustainable development within the sector. Such fuels should be compatible with existing infrastructure and derived from second generation feedstocks to avoid competition with food markets. With properties similar to petroleum based fuels, isoprenoid derived compounds such as limonene, bisabolane, farnesane, and pinene dimers are of increasing interest as “drop-in” replacement jet fuels. In this review potential isoprenoid derived jet fuels and progress toward their microbial production was discussed in detail. Although substantial advancements have been achieved, the use of first generation feedstocks remains ubiquitous. Lignocellulosic biomass is the most abundant raw material available for biofuel production, however, technological constraints associated with its pretreatment and saccharification hinder its economic feasibility for low-value commodity production. Non-conventional microbes with novel characteristics including cellulolytic bacteria and fungi capable of highly efficient lignocellulose degradation and xylose fermenting oleaginous yeast with enhanced lignin-associated inhibitor tolerance were investigated as alternatives to traditional model hosts. Finally, innovative bioprocessing methods including consolidated bioprocessing and sequential bioreactor approaches, with potential to capitalize on such unique natural capabilities were considered.

Highlights

  • Transportation is critical to sustainable development and global economic growth

  • This review focused on potential isoprenoid derived advanced biojet fuel candidates and progress toward their microbial production

  • Lignocellulosic biomass is comprised of up to 40% pentose sugars, which cannot be naturally metabolized by S. cerevisiae or E. coli and the lignin associated compounds released during lignocellulosic biomass pretreatment inhibit growth of these model hosts

Read more

Summary

INTRODUCTION

Transportation is critical to sustainable development and global economic growth. despite efforts to develop alternative fuels, reliance on fossil fuels is ongoing. If the environmental cost is to be eliminated, the introduction of sustainable alternatives to petroleum based aviation fuels is critical This demand for sustainable advanced biofuels is widely recognized by national governments (UK Government (Department for Transport), 2018; Governement of India (Ministry of New and Renewable Energy), 2019), influential multinational organizations (United Nations, 2015; The European Parliament and of the Council of the European Union, 2018) and global oil and gas companies (ExxonMobil, 2018; Royal Dutch and Shell, 2019). Thanks to advancements in synthetic and systems biology technology, progress toward the construction of such cell factories has accelerated recently and microbial production of a wide range of potential isoprenoid biojet fuel feedstocks has been demonstrated at laboratory scale (Peralta-Yahya et al, 2011; Brennan et al, 2015; Mendez-Perez et al, 2017; Liu et al, 2018, Liu Y.et al, 2019). The development and scale up of economical bioprocesses for such

L Bioreactor Fed-batch
Findings
CONCLUSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.