Abstract

The catalytic conversion of cellulose to lactic acid (LA) has garnered significant attention in recent years due to the potential of cellulose as a renewable and sustainable biomass feedstock. Here, a series of Au/W-ZnO catalysts were synthesized and employed to transform cellulose into LA. Through the optimization of reaction parameters and catalyst compositions, we achieved complete cellulose conversion with a selectivity of 54.6% toward LA over Au/W-ZnO at 245 °C for 4 h. This catalyst system also proved effective at converting cotton and kenaf fibers. Structural and chemical characterizations revealed that the synergistic effect of W, ZnO, and Au facilitated mesoporous architecture generation and the establishment of an adequate acidic environment. The catalytic process proceeded through the hydrolysis of cellulose to glucose, isomerization to fructose, and its subsequent conversion to LA, with glucose isomerization identified as the rate-limiting step. These findings provide valuable insights for developing high-performance catalytic systems to convert cellulose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.