Abstract
One potential replacement for fossil fuels is the generation of biofuel from biomass feedstock. To reach the global sustainability goals, it is also necessary to address a number of issues, such as reducing environmental pollution, climate change, and carbon emissions. This work was aimed to convert the office paper waste as biomass feedstock into bioethanol through a sustainable pathway. The office paper waste was hydrolyzed via physiochemical and enzymatic hydrolysis, the liberated glucose was estimated at 15.72 g/L using the optimum conditions of 15 % HCl and 6 % office paper waste followed by enzymatic hydrolysis. The yeast isolate B2 that was applied for the fermentation process was isolated from rotten banana, identified as Hanseniaspora uvarum (STDF-B2) and submitted to GenBank with accession number (OP800106). The Box-Behnken design was applied to estimate the optimal conditions for the three most significant variables depending on the one variable at a time results. A blended membrane of sulphonated polyvinyl chloride with poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (SPVC-PAMPS) was applied for the purification of both standard ethanol and produced bioethanol via pervaporation technique (PV). The morphology, chemical composition, mechanical properties and permeability of the membrane were all analyzed in various ways. Following purification using a membrane-integrated amicon cell, the total permeate flows of the laboratory-prepared ethanol and generated bioethanol were 289.54 and 253.06 (g/m2 h), respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.