Abstract

ZrO2-supported H3PW12O40 (HPW) catalysts were used to catalyze the dehydration of glycerol to produce acrolein at 315 °C under a high space velocity (GHSVGlycerol = 400 h−1). The catalysts were prepared by varying the loading of HPW on two ZrO(OH)2 supports of different preparations, followed by calcination in flowing nitrogen. The use of alcogel-derived ZrO(OH)2-AN for the support, compared with conventional hydrogel-derived ZrO(OH)2-CP, produced HPW/ZrO2 catalysts that showed higher surface areas and better catalytic performance for the selective formation of acrolein from glycerol dehydration. Independent of the preparation history of ZrO2, the Keggin-anion density (HPW nm−2) at the catalyst surface appeared as a key to the selectivity and mass-specific activity of HPW for acrolein production. Acrolein selectivity as high as 70 mol% was obtained over the catalysts having the intermediate densities (0.18–0.65 HPW nm−2), at which most of the Keggin HPW remained intact after calcination up to 650 °C. At higher densities, destruction of the Keggin HPW would occur during the calcination, which led to lower acrolein selectivity. High selectivity (71 mol%) and high yield (≥54%) for acrolein production were found sustainable over the best performing HPW/ZrO2-AN catalyst for reaction times up to 10 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.