Abstract
Water reclamation systems based on dense membrane treatment such as reverse osmosis (RO) are being progressively applied to meet water quantity and quality requirements for a range of urban and environmental applications. The RO concentrate usually represents 25% of the feed water flow and contains the organic and inorganic contaminants at higher concentrations. The amount of RO concentrate waste water requiring disposal must be as minimal as possible (near zero-discharge); the recovery of high quality water should be as high as possible. Management issues related to proper treatment and disposal of RO concentrate are an important aspect of sustainable water reclamation practice. The RO concentrate is a significant component of water treatment process and poorly managed treatment and disposal of RO concentrate causes significant consequences. Even in a small to medium size water reclamation plant in Sydney, 2000 kL of water is treated by RO and around 300 kL of RO concentrate is produced daily. This RO concentrate consists of a high level of organics (25-30mg/L of DOC which is mainly refractory organics) and inorganic salts (Cl− = 400-650mg/L, Na+ = 400-500mg/L, Ca2+ = 93-200mg/L, K+ = 63-100mg/L). The RO concentrate waste disposal cost can be minimized and made valuable by reclaiming the RO concentrate with the aim of producing salts from the solutes and recycling the water to the treatment system. Technologies for recovery of high salt concentration from the RO concentrate such as forward osmosis (FO) and membrane distillation (MD) are either energy intensive or not developed in large scale. In this study, we highlight a sustainable membrane adsorption hybrid system in treating this RO concentrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.