Abstract

In recent times, bio-based hyperbranched polymers have attracted tremendous interest in industrial and scientific research, owing to their promising and unique attributes over their synthetic conventional analogs. Industrially important bio-based hyperbranched polymers such as polyurethane, polyester, poly(ester-amide), and epoxy have been developed over the last two decades from Advanced Polymer and Nanomaterial Laboratory of Tezpur University. They are synthesized by the Ax + By (x, y ≥ 2) approach with or without solvent, following the dictates of “Green Chemistry.” Again, it is a well-known fact that “virginity is not virtue” in case of polymers and the conventional filled composite systems are inappropriate to improve the performance of such bio-based polymers and hence unable to meet the service demands of advanced applications. Thus, nanotechnology, in recent times, is adopted to develop a variety of nanocomposites of the above sustainable polymers with different types of nanomaterials. The developed nanocomposites showed significant improvement of desired properties including mechanical, thermal, chemical, biological, optical, etc., along with special properties like shape memory, self-healing, self-cleaning, biocompatibility, etc. A brief overview of such sustainable materials including their applications from advanced air cleaning paints to injectable bone tissue scaffold including smart materials is discussed in this chapter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.