Abstract

Polylactide, a biodegradable polymer, can alleviate white pollution, but the use of polylactide in food packaging is limited by high transmittance to light with a specific wavelength, UV (185–400 nm) and short-wavelength visible (400–500 nm) light. Herein, the polylactide end-capped with renewable light absorber aloe-emodin (PLA-En), is blended with commercial polylactide (PLA) to fabricate the polylactide film with the function of blocking light with a specific wavelength, PLA/PLA-En film. Only 40 % of light around 287 and 430 nm transmits through PLA/PLA-En film incorporating 3 mass% of PLA-En, while the film still maintains good mechanical properties and high transparency more than 90 % at 660 nm because of the good compatibility with PLA. The PLA/PLA-En film exhibits stable light-blocking properties under light irradiation and anti-solvent migration under the immersion of fat simulant. Almost no PLA-En migrated out of the film with the molecular weight of PLA-En only 2.89 × 104 g/mol. Compared with PLA film and commercial PE plastic wrap, the designed PLA/PLA-En film exhibits a better preservative effect on riboflavin and milk for inhibiting the production of 1O2. This study offers a green strategy for developing UV and short-wavelength light protective food package film based on renewable resource.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call