Abstract

Thermoplastic elastomers (TPEs) have attracted increasing attention for a wide variety of industrial and biomedical applications owing to their unique properties compared to those of traditional rubbers. To develop high-performance engineering TPEs and reduce the environmental pollution caused by plastic waste, α,ω-hydroxyl-terminated polycaprolactone (PCL) polyols with molecular weights of 1000-4200 g mol-1 and polydispersity index (Ð) of 1.30-1.88 are synthesized via the ring-opening polymerization of sustainable ε-caprolactone using a heterogeneous double metal cyanide catalyst. The resulting PCL polyols are employed as soft segments to produce thermoplastic poly(ester ester) elastomers and are compared to conventional thermoplastic poly(ether ester) elastomers prepared from polytetramethylene ether glycol (PTMEG). Notably, the PCL-based TPEs exhibit superior mechanical properties and biodegradability compared to PTMEG-based TPEs owing to their crystallinity and microphase separation behaviors. Accordingly, they have 39.7 MPa ultimate strength and 47.6% biodegradability, which are much higher than those of PTMEG-based TPEs (23.4 MPa ultimate strength and 24.3% biodegradability). The introduction of biodegradable PCLs demonstrates significant potential for producing biodegradable TPEs with better properties than polyether-derived elastomers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call