Abstract

Although aqueous zinc-ion batteries (AZIBs) promise high capacity, low cost, and environmental friendliness, the Zn metal anode suffers from limited reversibility and unsatisfied lifespan arising from severe dendritic growth and inevitable interfacial corrosion. In this regard, constructing the artificial protective interfacial layer on the Zn metal foil has been recognized as an effective strategy to realize durable AZIBs. Inspired by the phytic acid (PA) anticorrosion conversion coating layer for industrial metal protection, herein, we designed a dense and conformal PA-Zn complex layer on the Zn anodes through a feasible, rapid wet-chemistry chelating reaction. The in situ formed uniform PA-Zn coating layer on the surface of Zn anodes can serve as a protective layer inhibiting corrosion reaction. More importantly, the desolvation energy of Zn2+ is effectively reduced by the PA-Zn layer, which gives rise to enhanced kinetics of Zn plating/stripping for uniform Zn deposition. Consequently, the PA-Zn metal anode delivered a low overpotential of 36 mV and a long lifespan over 1400 h at 2 mA cm-2 with a capacity of 1 mA h cm-2. The feasibility of PA-Zn anodes is also verified in the as-constructed PANI@V2O5||Zn full cells. This work paves the way for designing a multifunctional interface layer on Zn metal and promotes the development of high-performance AZIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.