Abstract
Despite the supremacy of active cooling methods in the thermal management of photovoltaic modules, the passive cooling approach is still prominent due to its simplicity, sustainability, and substantial heat transportation capability. As water siphoning techniques are always promising among multiple passive methods, the present experimental study is focused on energy, exergy, environment, and economic analysis with burlap fabric as a siphoning agent. During haze weather, the day-long testing upholds the burlap single layer arrangement over phase change material-based and evaporative cooling. A maximum 28.6% temperature drop was experienced in burlap based system against the reference module, which narrowed to 15.7% in evaporative cooling and 14.4% in PCM cooling. Even the power enhancement and second law analysis followed the same trend. Later, the best version i.e. burlap based cooling with single and double layers were tested under clear weather, which resulted in a power improvement of 12–15% and 18–21% respectively compared to reference module. Finally, the detailed exergy and economic analysis uphold the sovereignty of the proposed technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.