Abstract

Nitrogen-doped carbon particles were produced using the hydrothermal carbonization of a nitrogen-containing carbohydrate, namely glucosamine, under mild temperature conditions (180 °C) followed by further calcination under a stream of inert gas at 750 °C. The resulting materials contain significant amounts of nitrogen doping within their structure, mainly as quaternary N involved in an aromatized/graphitized carbon structure according to X-ray photoelectron spectroscopy. This nitrogen-doped material was dispersed with nanolatexes having a high affinity for carbon. The resulting hybrid dispersions could be conveniently cast into dense and stable films for thermal and electrical conductivity measurements. The conductivities were commensurate with technical carbon nanotube latex-based films. A morphological analysis of the dispersing mechanism suggests that the potential for high performance materials realized in this contribution is very competitive, but still far from being fully exploited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.