Abstract

The present paper focuses on the effective utilization of byproduct of stone mines and waste plastic causing harm to the environment. It signifies sustainable utilization of quarry dust to their full potential to meet the needs of the present, while at the same time conserving natural resources and finding ways to minimise the environmental impacts associated both with quarry fines production. Mathematical modeling for interpreting modulus of elasticity of concrete mixes using ordinary river sand and compared with 0, 25%,50%,75%, 100% replacement with quarry dust in combination with waste plastic in fabriform is discussed. The addition of fine quarry dust with ldpe as waste plastic in concrete resulted in improved matrix densification compared to conventional concrete as well as . Matrix densification has been studied qualitatively through petro graphical examination using digital optical microscopy. The structure was evaluated using SEM in quarry dust and ldpe composites. It is observed that the modulus of elasticity values found to be maximum for 50% replacement of natural sand by quarry dust and waste plastic. The effects of quarry dust on the elastic modulus property were found to be consistent with conventional natural sand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.